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Nuclear Forces and Neutron Stars

A. S. Rabinowitch1,2

Received September 5, 1997

Earlier work on nuclear forces is applied to a study of cooled massive neutron
stars. Nuclear forces inside these stars cannot be neglected and their influence
on neutron star states is considered. One important property of nuclear forces is
their ability to be repulsive, which results in the phenomenon of nuclear saturation.
It is shown that this property can provide the balance of gravitational and nuclear
forces in cooled massive neutron stars.

1. INTRODUCTION

The problem of neutron star equilibrium was studied in the classical

article of Oppenheimer and Volkoff (1939), who showed that there is no

stationary solution of the general relativity equations corresponding to a cold

neutron star having a mass bigger than , 0.7M. But this study of the problem

cannot be regarded as complete because nuclear forces in stars were not
taken into consideration. However, the nuclear forces in massive neutron

stars can be essential when the stars become extremely cold and therefore

shrink considerably.

To fill the gap in the study of this problem let us turn to a theory of

nuclear forces (Rabinowitch, 1994, 1997). According to this theory, the
nuclear field can be described by a scalar potential w which satisfies the

following covariant equation in an arbitrary coordinate system x n:

( 2 g) 2 1/2 - [( 2 g)1/2 - w / - xn]/ - x n 1 (m p c / " )2 w 5 2 4 p (G /mp)
2 r ( w ) (1)

g 5 det(gik), r ( w ) 5 r 0 exp( w /c 2) (2)

where gik are the components of the metric tensor, r ( w ) is the density of the
nuclear matter mass at rest in a local inertial coordinate system, r 0 5 r (0),

1 Department of Mathematical Modelling, Moscow State Academy of Instrument-Making and
Informatics, Moscow, 107846 Russia.

2 Permanent address: Bryanskaya Ulitza, 12-63, Moscow, 121059 Russia.

1477

0020-7748/98/0500-147 7$15.00/0 q 1998 Plenum Publishing Corporation



1478 Rabinowitch

m p and mp are the masses at rest of the neutral pion and proton, respectively,

and G is the constant of strong interaction.

The energy-momentum tensors T ik
m and T ik

f of a dustlike and uncharged
matter and of the nuclear field generated by it, respectively, and the total

energy-momentum tensor Tik are as follows (Rabinowitch, 1994):

T ik
m 5 c 2 r 0 exp( w /c 2) dxi/ds dxk/ds

T ik
f 5 (m 2

p /4 p G 2)[(g ing id 2 1±2 g ikg nl) - w / - x n - w / - x l (3)

f 5 1 g ik(m p c / " )2 w 2/2]

T ik 5 T ik
m 1 T ik

f , ¹ i T ik 5 0, ds2 5 gik dxi dxk (4)

For neutron stars, in which there are pressures and heat flows, we have

to generalize expression (3) for the energy-momentum tensor of matter T ik
m.

This generalization will be given in the next section.

2. GRAVITATIONAL AND NUCLEAR FIELD AND
THERMODYNAMIC EQUATIONS FOR NEUTRON STARS

Let us find the energy-momentum tensor T ik
m of a nuclear matter with

pressures and heat flows. For the matter in a comoving local inertial coordinate
system we have the following expressions for the components T ik

m:

T `
m 5 c 2 r 0e

w /c2
1 u, T 0 a

m 5 q a
0 /c, T a b

m 5 p d a b , a , b 5 1, 2, 3

dx a /ds 5 0, ds2 5 (dx0)2 2 (dx1)2 2 (dx2)2 2 (dx3)2 (5)

where we have used formula (2), and d a b is the Kroneker symbol, p is the
pressure in the matter, q a

0 is the three-dimensional vector of heat flow, and

u is the density of the internal energy of the matter associated with its

thermal motion.

It is easily seen that the tensor T ik
m that satisfies (5) has the following

form in an arbitrary coordinate system x n:

T ik
m 5 (c 2 r 0e

w /c2
1 u 1 p) dxi/ds dxk/ds 2 pgik 1 (q idxk/ds

1 q kdxi/ds)/c (6)

where q i is the four-dimensional vector of heat flow, which has the following

components in a comoving local inertial coordiante system:

q 0 5 0, q a 5 q a
0, a 5 1, 2, 3, dxa/ds 5 0

ds2 5 (dx0)2 2 (dx1)2 2 (dx2)2 2 (dx3)2 (7)

Let us calculate the covariant derivative ¹ i T ik
m, taking into account the

differential equation
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¹ i ( r 0 dxi/ds) 5 0 (8)

which expresses the conservation of a mass at rest m0 having the density r 0

(Rabinowitch, 1994).

From (6) and (8) we obtain

¹ i T
ik
m 5 {e w /c2

- w / - x i 1 - [(u 1 p)/ r 0]/ - x i} r 0 dxi/ds dxk/ds

1 (c 2 r 0e
w /c2

1 u 1 p) ¹ i (dx k/ds) dx i/ds 2 - p / - xk

1 [ ¹ i (q
k/ r 0) r 0 dx i/ds

1 ¹ i q
i dx k/ds 1 q i ¹ i (dx k/ds)]/c (9)

Since (Landau and Lifshitz, 1971)

¹ i (dx k/ds) dx i/ds 5 d 2x k/ds2 1 G k
mn dx m/ds dx n/ds (10)

where G k
mn are the Christoffel symbols, from (9) we get

¹ i T
ik
m 5 (c 2 r 0e

w /c2
1 u 1 p)(d 2x k/ds2 1 G k

mn dx m/ds dx n/ds)

1 r 0e
w /c2

d w /ds dx k/ds 1 d [(u 1 p)/ r 0]/ds r 0 dx k/ds 2 - p / - xk

1 [ ¹ i (q
k/ r 0) r 0 dx i/ds 1 ¹ i q

i dx k/ds 1 q i ¹ i (dx k/ds)]/c (11)

As for the energy-momentum tensor T ik
f of the nuclear field, its covariant

derivative has the form

¹ i T
ik
f 5 2 r 0 exp( w /c 2) - w / - xk (12)

Formula (12) easily follows from (1) ± (3) in local inertial coordinate

systems (Rabinowitch, 1994). Since both sides of this formula are tensors,

it is also true in arbitrary coordinate systems.
From (4), (11), and (12) we obtain the following dynamic equation:

¹ i T
ik 5 (c 2 r 0e

w /c2
1 u 1 p)(d 2x k/ds2 1 G k

mn dx m/ds dx n/ds)

1 r 0e
w /c2

(d w /ds dx k/ds 2 - w / - xk) 1 [d (u 1 p)/ds 2 (1/ r 0)

3 (u 1 p) d r 0/ds] dx k/ds 2 - p / - xk 1 [ ¹ i (q
k/ r 0) r 0 dx i/ds

1 ¹ i q
i dx k/ds 1 q i ¹ i (dx k/ds)]/c 5 0 (13)

Let us use the equalities

(d 2x k/ds2 1 G k
mndx m/ds dx n/ds) dxk /ds 5 0 ¹ i (dx k/ds) dxk /ds 5 0

(14)

These equalities are obvious in local inertial coordinate systems because of

the formulas
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dxk

ds

d 2x k

ds2 5
1

2

d

ds 1 dxk

ds

dxk

ds 2 5 0

dxk

ds

-
- x i 1 dxk

ds 2 5
1

2

-
- x i 1 dxk

ds

dxk

ds 2 5 0

ds2 5 (dx0)2 2 (dx1)2 2 (dx2)2 2 (dx3)2 (15)

Since both sides of equalities (14) are tensors (Landau and Lifshitz,

1971), they are also true in arbitrary coordinate systems.

Multiply equation (13) by dxk/ds. Then from (13) and (14) we obtain

du/ds 2 (1/ r 0)(u 1 p) d r 0 /ds

1 [ ¹ i q
i 1 r 0 ¹ i (q

k/ r 0) dxi/ds dxk/ds]/c 5 0 (16)

In order to understand the physical essence of equality (16), let us choose

a comoving local inertial coordinate system. Then in this coordinate system

from (16) and (7) we get

d (u 1 2q 0/c)/dt 2 (1/ r 0)(u 1 p) d r 0/dt 1 - q a / - x a 5 0

dt 5 ds/c, dx a /ds 5 0, a 5 1, 2, 3 (17)

Let VS be a small three-dimensional volume in the comoving local

inertial coordinate system. Then

r 0VS 5 dm0 5 const (18)

where dm0 is a small invariable mass at rest.
From (18) we find

d ( r 0VS )/dt 5 0, d r 0 5 2 ( r 0/VS ) dVS (19)

and from (17) and (19) we get

VS d (u 1 2q 0/c) 1 (u 1 p) dVS 1 VS dt - q a / - x a 5 0, a 5 1, 2, 3 (20)

Taking into account (7), we can represent (20) in the form

d [(u 1 2q 0/c)VS] 5 2 p dVS 2 VSdt - q a / - x a (21)

Let us put

U 5 (u 1 2q 0/c)VS, d A 5 2 p dVS

d Q 5 2 VS dt - q a / - x a 5 2 dt # VS

- q a / - x a dVS 5 2 dt # S d

qn dSS (22)

Here, as follows from (6), U is the internal energy of the small volume VS,
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d A is the work done by the pressure p, d Q is the heat entering the volume

VS through its surface SS for the small time dt, and qn is the projection of

the vector q a onto the outer normal of the surface SS.
Hence from formulas (21) and (22) we get the first law of

thermodynamics

dU 5 d A 1 d Q (23)

This thermodynamic law just presents the physical essence of equal-

ity (16).

It is worth noting that the thermodynamic law (23) is a consequence of
the differential laws of the conservation of energy, momentum, and mass at

rest, (4) and (8), and of the nuclear field equation (1).

Let us turn to the gravitational field equations

R i
k 2 1±2 Rgi

k 5 k T i
k (24)

and consider the stationary and spherically symmetric state of a neutron star.

Then the interval ds can be represented in the form

ds2 5 e v(dx0)2 2 r 2(d u 2 1 sin2 u d f 2) 2 e l dr2 (25)

where n 5 n (r), l 5 l (r), and r, f , u are spherical coordinates. In this case

equations (24) are reduced to the following three equations (Landau and

Lifshitz, 1971):

k T 0
0 5 e 2 l ( l 8/r 2 1/r 2) 1 1/r 2, k T 1

1 5 2 e 2 l ( n 8/r 1 1/r 2) 1 1/r 2

¹ i T
i
1 5 0 5 (T 1

1)8 1 (2/r)(T 1
1 2 T 2

2) 1 ( n 8/2)(T 1
1 2 T 0

0) (26)

where x 1 5 r, x 2 5 f , x 3 5 u . For the other components T i
k we have

T 3
3 5 T 2

2, T i
k 5 0, i Þ k (27)

In the stationary case under consideration, taking into account (27),

T 0
a 5 0, a Þ 0, we have

q a 5 0, dx a /ds 5 0, a 5 1, 2, 3 (28)

Therefore, from (3), (6), (25), and (28) we find

T 0
0 5 c 2 r 0e

w /c2
1 u 1 2e n /2q 0/c 1 (m 2

p /8 p G 2)[e 2 l w 8
2

1 (m p c w / " )2]

T 1
1 5 2 p 2 (m 2

p /8 p G 2)[e 2 l w 8
2
2 (m p c w / " )2]

T 2
2 5 T 3

3 5 2 p 1 (m 2
p /8 p G 2)[e 2 l w 8

2
1 (m p c w / " )2)] (29)

In the considered case, equation (1) for the nuclear potential w acquires

the form
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w 9 1 2 w 8[1/r 1 ( n 2 l )8/4] 5 e l [(m p c / " )2 w

1 4 p (G /mp)
2 r 0e

w /c2
] (30)

3. COOLED NEUTRON STARS WITH ULTRALOW
TEMPERATURES

Consider an arbitrary movement of a cooled neutron star with an absolute

temperature T ® 0. In this case nuclear forces are essential since stars have
to shrink considerably when their temperature becomes extremely low.

For this state of the star we have

lim
Tª0

u 5 0, lim
Tª0

q i 5 0, i 5 0, 1, 2, 3 (31)

Equalities (31) follow from the fact that the matter internal energy and

heat flows, which are described by the density u and vector q i, respectively,

and assotiated with thermal motions, are absent when the absolute temperature
T is zero.

From (16) and (31) we easily find that also

lim
Tª0

p 5 0 (32)

Let us return to the stationary spherically symmetric case. Then, when

the absolute temperature is very close to zero, from (29), (31), (32), and (13)

we get

T 0
0 5 c 2 r 0e

w /c2
1 (m 2

p /8 p G 2)[e 2 l w 8
2

1 (m p c w / " )2]

T 1
1 5 (m 2

p /8 p G 2)[(m p c w / " )2 2 e 2 l w 8
2
] (33)

T 2
2 5 T 3

3 5 (m 2
p /8 p G 2) [e 2 l w 8

2
1 (m p c w / " )2]

¹ i T
i
1 5 2 c 2 r 0e

w /c2
( n 8/2 1 w 8/c 2) 5 0, 0 # r # r0 (34)

where dx a /ds 5 0, a 5 1, 2, 3; x 1 5 r, x 2 5 f , x 3 5 u .

Let r0 be the radius of a cooled neutron star. Then from (34) we find

w /c 2 5 ( n 0 2 n )/2, n 0 5 const, 0 # r # r0 (35)

Equations (2), (30), and (35) give the following formula for the mass
density r ( w ).

r 5 r 0e
w /c2

5 r 0e
( n 0 2 n )/2 5 2 (m 2

pc
2/8 p G 2){(m p c / " )2( n 0 2 n )

1 e 2 l [ n 9 1 n 8(2/r 1 ( n 2 l 8)/2)]}, 0 # r # r0 (36)

From (26), (33), (35), and (36) we get
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1 2 e 2 l (1 2 l 8r) 5 2 ( k m 2
pc

4r 2/8 p G 2)[(m p c /2 " )2( n 0 2 n )(4 1 n 2 n 0)

1 e 2 l ( n 9 1 2 n 8/r 2 n 8 l 8/2 1 n 8
2
/4)]

1 2 e 2 l (1 1 n 8r) 5 2 ( k m 2
pc

4r 2/32 p G 2) (37)

3 [e 2 l n 8
2

2 (m p c / " )2( n 0 2 n )2], 0 # r # r0

Consider l (r) and n (r) at the point r 5 0. As follows from (37), we have

l (0) 5 0 (38)

By performing the differentiation at the point r 5 0 of the two equations

(37) and using (38), we get

2 l 8(0) 1 ( k m 2
pc

4/4 p G 2) n 8(0) 5 0, l 8(0) 2 n 8(0) 5 0 (39)

Hence from (38) and (39) we have

l (0) 5 l 8(0) 5 n 8(0) 5 0 (40)

Let us introduce the following variable x and functions f (x) and g (x),

taking into account (40):

x 5 (r /r0)
2, e 2 l 5 1 2 xf(x), n 2 n 0 5 g (x), 0 # x # 1

(41)

and put

a 5 k m 2
pc

4/8 p G 2, b 5 m p cr0/2 " (42)

Then equations (37) can be represented in the form

2xf 8 1 3f 5 a [4 b 2g 2 2(1 2 xf )(2xg9 1 3g8 1 xg8
2
)

1 2xg8(xf 8 1 f ) 1 (1 2 xf )xg8
2

1 b 2g 2]

2(1 2 xf )g8 2 f 5 a [(1 2 xf )xg8
2

2 b 2g 2] (43)

f 5 f (x), g 5 g (x), 0 # x # 1

Since

b 5 0.5r0 /r p , r p 5 " /m p c (44)

where r0 is the star radius and r p is the Compton length of the pion, the

value b is very large:

b . . 1 (45)

As b is enormous, equations (43) practically coincide with the equations
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2xf 8 1 3f 5 a b 2g (4 1 g), f 2 2(1 2 xf )g8 5 a b 2g 2 (46)

It follows from (41) and (46) that we have to seek functions f (x)
and g (x) bounded at x 5 0 in order to satisfy condition (40). For such

functions we derive the following condition from the first equation in

(46) by putting x 5 0:

f (0) 5 a b 2g (0)[4 1 g (0)]/3 (47)

Consider now equations (26), (30), and (33) when r $ r0. Outside a

neutron star having the radius r0 the density r 0 can be represented in the

form (Rabinowitch, 1997)

r 0 5 2 s d (r 2 r0), r $ r0 (48)

Here d (x) denotes the even delta function, r 2 r0 is the distance between a

point (r, f , u ) and the sphere r 5 r0 in a comoving local inertial coordinate

system chosen near the sphere, and s 5 const.

Formula (48) expresses the density of virtual pions created in the physical
vacuum at the surface r 5 r0 because of the influence on it of the surface.

The value of the constant s is given by the formula (Rabinowitch, 1997)

s 5 0.049/s, s 5 4 p " G2/m 2
pm p c 3, G 2/ " c 5 0.080 (49)

When d f 5 d u 5 0, from (25) we have

ds2 5 e n (dx0)2 2 e l dr2 5 (dxÅ 0)2 2 drÅ 2 (50)

where xÅ 0, rÅ are the corresponding coordinates in a comoving local inertial
coordinate system.

As is well known, for the comoving coordinate system xÅ 0, rÅ from (50)

we have

dxÅ 0 5 e n /2dx0, drÅ 5 e l /2dr (51)

From (48) and (51) we get

r 0 5 2 s d [e l /2(r 2 r0)] 5 2 s e 2 l /2 d (r 2 r0), r $ r0 (52)

Formulas (30) and (52) give the following equation for the nuclear field

potential w outside the star:

w 9 1 2a w 8/r 2 b 2 w 5 w, w 5 w (r), r $ r0 (53)

where

a 5 1 1 ( n 2 l )8r /4, b 5 e l /2 m p c / "

w 5 8 p (G /mp)
2 s e l /2 1 w /c2

d (r 2 r0), #
`

0

d (x) dx 5 1/2 (54)

Equation (53) can be represented in the form
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w 9(z) 1 2a (z) w 8(z)/z 2 4 b 2e l (z) w (z) 5 r 2
0w (z), z 5 r /r0, z $ 1 (55)

where b is defined by formula (44), b . . 1, and

a (z) 5 1 1 [ n 8 (z) 2 l 8 (z)]z /4 (56)

In order to solve equation (55), let us introduce two functions p (z) and

q (z) which satisfy the equations

p 1 q 5 2a (z)/z, p8 1 pq 5 2 4 b 2e l (z) (57)

Consider the function

y (z) 5 w 8(z) 1 p (z) w (z) (58)

Then from (57) and (58) we find

y8 1 qy 5 w 9 1 ( p 1 q) w 8 1 ( p8 1 pq) w 5 w 9 1 2a w 8/z 2 4 b 2e l w (59)

and from (55) we get

y8 1 qy 5 r 2
0w, z $ 1 (60)

Hence the differential equation (55) of the second order is equivalent

to equations (57), (58), and (60) of the first order.

From (57) we have

( p 80 1 2ap0/z)/ b 2 p 2
0 5 2 4e l , p0 5 p / b (61)

Since the value b defined by (44) is enormous, we find the following

approximate solution of equation (61), which practically coincides with the

exact one:

p 2
0 ’ 4e l , p0 5 p / b , b . . 1 (62)

As follows from (57) and (62), we can put

p 5 2 b e l /2, q 5 2(a /z 2 b e l /2) ’ 2 2 b e l /2 (63)

From (58), (60), (63), and (54) we easily find the following solutions

w (z) and y (z) vanishing at infinity:

w (z) 5 exp 1 2 #
z

1

p dz 2 [ #
z

`

y exp 1 #
z

1

p dz 2 dz 1 D], D 5 const

(64)

y (z) 5 r 2
0 exp 1 2 #

z

1

q dz 2 #
z

`

w exp 1 #
z

1

q dz 2 dz, w ( ` ) 5 y ( ` ) 5 0, z $ 1

Formulas (58) and (64) give
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w 8(1) 1 p (1) w (1) 5 y (1) 5 2 r 2
0 #

`

1

w exp 1 #
z

1

q dz 2 dz,

w 5 w (z), z 5 r /r0 (65)

From (54), (63), and (65) we obtain

w 8(1) 1 2 b e l (1)/2 w (1) 5 2 4 p r0 s (G /mp)
2 e l (1)/2 1 w (1)/c2

,

w 5 w (z), l 5 l (z) (66)

Using again the variable x 5 (r /r0)
2 5 z 2, from (35), (41), and (66) we

find the following condition at the point x 5 1 (r 5 r0):

g8(1) 1 b g (1)(1 2 f (1)) 2 1/2 5 4 p r0 s (G /mpc)2(1 2 f (1)) 2 1/2e 2 g(1)/2

g 5 g (x), f 5 f (x), x 5 (r /r0)
2 (67)

Recalling that b is very large, from (67) and (44) we get

g (1)e g(1)/2 ’ 4 p r0 s (G /mpc)2/ b 5 8 p s " G2/m 2
pm p c 3, b . . 1 (68)

Formulas (49) and (68) give

g (1)e g(1)/2 5 0.098 (69)

This equation has the solution

g (1) 5 0.0935 (70)

Consider now the functions l (r) and n (r) when r $ r0. From (26)

we obtain

e 2 l 5 1 2 rg/r 2 ( k /r) #
r

`

r 2T 0
0 dr, n 5 #

r

`

[(e l 2 1)/r 2 k re l T 1
1] dr

(71)

Here

k 5 8 p g /c 4, rg 5 2 g M /c 2 (72)

where g is the gravitational constant, and rg and M are the gravitational radius
and mass of the neutron star, respectively.

When r . r0, from (54), (63), and (64) we find

w (z) 5 0, y (z) 5 0, w (z) 5 D exp 1 2 2 b #
z

1

e l /2 dz 2 ,

z 5 r /r0, z . 1 (73)

From (44) and (73) we get



Nuclear Forces and Neutron Stars 1487

w 8(r) 5 2 (m p c / " )e l /2 w (r), r . r0 (74)

and from (33), (42), (52), and (74) we derive

T 0
0 5 2c 2 s e w /c2 2 l /2 d (r 2 r0) 1 8 w 2/ e k r 2

0c
4, T 1

1 5 0, r . r0 (75)

where

e 5 1/ a b 2 (76)

From (42), (72), and (76) we get

e 2 1 5 g (mpm p cr0/2 " G)2 5 (r0/rg)
2( g 3/2mpm p M /c " G)2 (77)

Formula (77) can be represented in the form

e 2 1/2 5 x (M /M ( )(r0/rg), x 5 g 3/2mpm p M ( /c " G) (78)

where g is the gravitational constant, M ( is the mass of the Sun, and x is a

dimensionless constant.

Using (49) for the constant G and the well-known values of the constants

g , mp , m p , c, " , M ( , we can determine the constant x . Its value is as follows

x 5 0.2747 (79)

Hence from (78) and (79) we get

e 2 1/2 5 0.2747(M /M ( )(r0/rg) (80)

When r $ r0 formulas (71) and (75) give

e 2 l 5 1 2 rg/r 1 k c 2r0 s e w /c2 2 l /2 N (r 2 r0)

1 (8/ e c 4r 2
0r) #

`

r

r 2 w 2 dr, r $ r0 (81)

where

N (0) 5 1 N (r 2 r0) 5 0, r . r0 (82)

Since b is enormous, from (73) we get

w (r) ’ 0, r . r0, b . . 1 (83)

Therefore, from (81) and (83) we find

e 2 l 5 1 2 rg/r 1 k c 2r0 s e w /c2 2 l /2 N (r 2 r0), r $ r0 (84)

From (42), (49), and (76) we have

k c 2r0 s 5 0.049m 2
pm p c 5r0 k /4 p " G2 5 0.196 a b 5 0.196/ b e (85)

where e is determined by (80).
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Taking again into account that b is enormous, from (84) and (85) we find

e 2 l ’ 1 2 rg/r, r $ r0, b . . 1 (86)

From (71), (75), and (86) we obtain

n 5 2 #
`

r

(e l 2 1)/r dr ’ ln(1 2 rg/r), r $ r0 (87)

Hence from (25), (86), and (87) we get the Schwarzschild interval ds
outside the neutron star.

When r 5 r0, formulas (41), (70), (86), and (87) give

rg/r0 5 f (1), n 0 5 ln(1 2 rg/r0) 2 0.0935 (88)

Let us put

h (x) 5 e f (x) (89)

For the functions h (x) and g (x), from (46), (47), (70), (76), and (89)

we get the following equations:

2xh8(x) 1 3h (x) 5 g (x)(4 1 g (x))

2( e 2 xh(x))g8(x) 5 h (x) 2 g 2(x), 0 # x # 1 (90)

g (0) 5 g0, h (0) 5 g0(4 1 g0)/3, g (1) 5 0.0935 (91)

where g0 is some constant dependent on e .
In order to determine g0, we have to use the third condition in (91) for

g (1). The obtained equations (90) and (91) can be numerically solved for

different values of the parameter e .

Thus the problem under consideration is reduced to equations (90) and

(91). After obtaining computer numerical solutions of these equations we

can find the functions l (r), n (r), w (r), and r (r) inside the neutron star by
formulas (35), (36), (41), (88), and (89).

The values of r0/rg and M /M ( can be determined by formulas (80), (88),

and (89) as follows:

r0/rg 5 e /h (1), M /M ( 5 3.640 h (1)/ e 3/2 (92)

Here rg and M are the gravitational radius and mass of the neutron star,

respectively.
We have performed computer numerical integration of equations (90)

and (91) for different values of the parameter e . For each e the parameter g0

was also varied and was chosen so that the condition g (1) 5 0.0935 in (91)

was satisfied.
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Table I. Computer Constant g0, Radius r0, and Mass M of Cooled Neutron Stars for

Different Values of the Parameter e

e g0 3 104 M/M ( r0 /rg

10.000 877.984820 0.014 80.3936

4.000 799.811353 0.055 33.3656

2.000 687.477403 0.146 17.6730

1.000 515.679144 0.372 9.7918

0.500 306.338906 0.891 5.7804

0.200 86.293776 2.540 3.2049

0.100 17.358031 5.231 2.2003

0.070 5.661120 7.433 1.8509

0.050 1.562563 10.219 1.5929

0.040 0.576383 12.527 1.4529

0.030 0.131147 16.124 1.3034

0.025 0.045177 18.796 1.2248

0.020 0.010540 22.492 1.1444

0.017 0.003255 25.464 1.0963

0.015 0.001225 27.894 1.0655

0.013 0.000369 30.790 1.0368

0.012 0.000181 32.448 1.0241

0.011 0.000081 34.258 1.0131

10.010 0.000032 36.233 1.0046

The results of the computer calculations of the solutions of equations
(90) and (91) and then of the values r0/rg and M /M ( are given in Table I.

As follows from Table I, equations (90) and (91) have solutions for

large values of the parameter M /M ( . This means that nuclear forces can

balance gravitational forces in cooled massive neutron stars.
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